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A numerical and analytical study is described for the divided flow field produced when 
the flows in two equal parallel channels, separated upstream by an aligned splitter 
plate, join together to form a single channel beyond the enclosed trailing edge of the 
plate. On the numerical side the second-order-accurate hite-difference scheme is 
based on a modified procedure to preserve accuracy and iterative convergence at 
higher Reynolds numbers R. Account is taken also of the influence of the boundedness 
of the computational domain and of the irregular behaviour of the flow solution at 
the trailing edge. The numerical solutions are presented for values of R up to 1OOO. 
On the analytical side the asymptotic structure of the solution for large R is governed 
mainly by a long O(&) relative lengthscale upstream and beyond the trailing edge. 
This is followed by a longer O(R) scale far downstream, but effects of practical 
significance also arise on the nominally tiny scale of O(R-4). Comparisons between 
the numerical and the asymptotic results for the wall shear stresses and the wake 
centreline velocity are made, and overall the agreement seems reasonable. The use 
of comparisons is believed to strengthen the value of both the numerical and the 
analytical approaches for these flows. 

1. Introduction 
Branching and merging flows are of especial interest in practical terms in 

physiological flows and internal machinery dynamics, and they are also of especial 
interest more generally with regard to the understanding of fundamental fluid 
dynamics. For such flows can contain some or all of the elements of separation, eddies, 
reattachment, three-dimensionality, trailing-edge and leading-edge properties, 
unsteadiness and instability, for instance. Basic to the understanding of these 
complicated features and their influence, however, is the resolution first of more 
central and model problems which clarify the nature of a few of the possible main 
features. That provides the aim of the present work, which is concerned with the steady 
flow of an incompressible fluid through a divided channel. 
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The flow involved is of the trailing-edge kind in the sense that it forces two 
oncoming channel flows to join into one (see below). Many investigations, experimental, 
numerical and analytical, have been made of the leading-edge kind of branching where 
one oncoming flow is forced to divide into two, and these are summarized by Smith 
(1977a) and Pedley (1980) among others. Also, external flow past a trailing edge has 
been the subject of numerous studies. However, the properties of the flow past a 
trailing edge within a channel have received scant attention as far as we know. The 
specific geometry of concern here consists of an infinitely long straight channel 
I y* I < L ,  - co < x* < 00 of width 2 L  containing a symmetrically disposed straight 
splitter plate of semi-infinite extent given by y* = 0, x* < 0.  Here (x*, y*) are 
Cartesian coordinates with origin a t  the trailing edge of the splitter plate, while the 
corresponding velocity components (u*, w*) satisfy u* + 69 I y* 1 ( L  - I y* I) L-3, w* + O  
far upstream as x*+- 00. These conditions reflect the presence of oncoming plane 
Poiseuille flow in the two channels far upstream, the mass flux in each channel being 
& > 0. Far downstream the plane Poiseuille flow appropriate to the single wider 
channel is supposed to emerge, so that ~ * + 3 & ( L ~ - y * ~ ) / 2 L ~ ,  w*+O as x*+co.  In  
between these two limiting flows, the motion is assumed to be steady, laminar and 
two-dimensional. 

The present investigation of this basic merging flow has two main aspects: 
numerical and analytical. First, calculated solutions of the Navier-Stokes equations 
are given over a range of values of the Reynolds number R (see $2), up to 1000. The 
computational method involved here takes account of the discontinuity in the flow 
solution at the trailing edge, the influence of the finite extent of the computational 
domain and of its grid spacing and the need for special procedures to maintain 
accuracy and iterative convergence at larger values of R. The method and the results 
obtained are described in 52. Secondly, the proposed asymptotic properties of the 
solution for R 9 1 are presented in $3.  These are based largely on the viscous-inviscid 
interactive features that arise on the long O(*L) lengthscale in x*, although other 
lengthscales also play a significant part. Comparisons between the results of $2 as 
R increases and the asymptotic predictions of $ 3  are made in $4. The comparisons 
concern the wall shear stresses and the centreline velocity of the wake in the region 
x* > 0, and i t  is felt that the comparisons add much weight to the value of both the 
numerical and the analytical approaches used in studying these fluid flows. Further 
comments are also given in $4. 

2. Basic equations and numerical treatment 
In the usual way we work in terms of dimensionless coordinates x = x * / L ,  

y = y * / L .  The corresponding dimensionless velocity components and pressure are 
defined in terms of dimensional quantities by the equations u = Lu*/Q, v = Lv*/&, 
p = L2p*/pQ2.  The density p is assumed to be constant, and the Navier-Stokes 
equations for steady flow are 

au av 
ax ay -+- = 0, (2 . la)  

(2.1 b )  
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where R = U L / v  and U = Q/L.  In the numerical treatment it is convenient to work 
in terms of the dimensionless stream function $ and vorticity [ defined by the 
equations 

Then the NavierStokes equations can be expressed as 

V2$ = -5, 

where V 2  = a2/ax2+a2/ay2.  

--co < x < 00, 

The boundary conditions for the problem are 

and 

(2.3) 

(2.4) 

that, in the first place, for 

(2.5a) 

(2.5b) 

Next, for x > 0, 
[ = 0  ( y =  0) and @ + + y ( 3 - y 2 )  (x-tm).  (2.5c, d )  

Finally, for x < 0, 

y = O  ( y = O )  and $+y2(3-2y) (x+-m). 
aY 

The two equations (2.3) and (2.4) can be solved numerically subject to the set of 
conditions (2.5) by a finite-difference procedure using a square grid with grid lines 
parallel to the axes of x and y. By virtue of symmetry properties, the solution is 
required only for y > 0. It is natural to make y = 0 and y = 1 grid lines and also 
make the origin 0 a grid point. However, the vorticity is infinite at  0, and some special 
treatment of the situation near this point is required. This special treatment will be 
described shortly. 

Numerical solutions of (2.3) and (2.4) were obtained using the finite-difference 
approximations proposed by Dennis & Hudson (1978). On the square grid of side h 
we denote approximations to the functions @ and [ at a typical set of grid points 
(xo,yo), (xo+h, yo), (xo, y o + h ) ,  (xO-h,  yo)  and (xo, y o - h )  by means of the respective 
subscripts 0, 1 ,  2, 3 and 4. The finite-difference approximation to (2.3) at the point 
(xo, yo) is the usual central-difference formula 

$1 + $2 + $3+ $4-4$o+ h2[o = O, (2.6) 

while for (2.4) Dennis & Hudson give the approximation 

(1 - $ R h o  + i R 2 h 2 ~ i )  + (1 -$Rhv0 + iR2h2v:) + (1 + +Rhuo + i R 2 h 2 ~ i )  C3 
+(1 + ~ , R ~ w ~ + ~ R ~ ~ ~ v ~ ) [ ~ - { ~ + ~ R ~ ~ ~ ( u ~ + ~ ~ ) } [ ~  = 0. (2.7) 

This approximation is second-order-accurate, and the associated matrix is diagonally 
dominant for all values of R. This greatly improves the convergence properties of the 
iterative methods of solution which are used, particularly a t  high Reynolds numbers. 
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Boundary conditions for II. are known at all grid points on y = 0 and y = 1 from 
( 2 . 5 ~ ) .  On y = 0, 5 is given by ( 2 . 5 ~ )  for x > 0, and for x < 0 it is calculated at  all 
grid points using (2.5e). A similar calculation is carried out on y = 1 using (2.5b). In 
both cases the formula for calculating cB at these points on the solid boundaries is 
based on the method of Woods (1954), and yields 

where the subscript I denotes a value at the first internal grid point adjacent to the 
boundary grid point B. The iterative solution of the sets of equations (2.6) and (2.7) 
subject to the conditions (2.5) and (2.8) follows standard procedures similar to those 
described by Dennis & Smith (1980), and need not be given in detail. 

One grid point that does need special attention is the origin itself at  the trailing 
edge of the plate, where the vorticity is singular. This is dealt with by adapting to 
the present case a method described by Bramley & Dennis (1982b, 1984). A local 
expansion (see Moffatt 1964) near the origin of the (x, y)-coordinates is taken in the 
form 

II. @fV% ( 2 . 9 ~ )  

where ( r , 8 )  are polar coordinates. This expansion is assumed locally to satisfy 
V4$ = 0 and, since $ is an odd function of 8, f(8) may be taken in the form 

f(8) = A  sinAO+Bsin(h-2)8, (2.9b) 

where it is easily found that the admissible values of A are the roots of 

s i n 2 ( h - l ) ~  = 0 ;  

thus A = l + $ ,  n = 1 , 2  ,.... (2 .9~)  

It is then found that to satisfy the boundary conditions on the plate we must put 
A = -B. The leading term of ( 2 . 9 ~ )  is 

II. - Ad(sinp+ssini8), (2.10) 

6 - 2Ar3 sinit?. (2.11) 

and the corresponding expression for the vorticity is 

From (2.10) the stream function is not singular at the origin, and so there is strictly 
no difficulty in applying the finite-difference equations (2.6) at the point x = 0, y = h, 
which is the only grid point adjacent to the origin where they need be applied. On 
the other hand, we cannot apply (2.7) at this point, since this would involve a 
knowledge of 5 at the origin, which is singular. We therefore proceed in the following 
way. 

The assumption is made that h is small enough for (2.11) to give a satisfactory 
approximation near 0. We then determine the constant A by satisfying (2.1 1) at the 
point x = - h, y = 0, which is a point where ( is determined using (2.8). From the 
approximation to 5 so determined, we can calculate g(0, h) using (2.1 1) .  The required 
formula is 

5(0,4 = Y(-h,0)/2/2. (2.12) 

A very similar procedure was used by Smith & Dennis (1981) and Bramley & Dennis 
(1982a, 1984). It was carefully checked by alternative means and found to be quite 
accurate. In  the present work the formula (2.12) is incorporated into the iterative 
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procedure of solution as follows. Following an iterative sweep of all internal grid 
points (including (0, h)) for + using (2.6), a similar sweep of all points except (0, h) 
is made using (2.7) for 6. Then boundary values are calculated using (2.8), and finally 
(2.12) is applied. This iteration is then repeated. It is necessary to use a relaxation 
factor in applying (2.8); this is easily found by trial for a given value of R. Generally 
speaking, this factor has to be decreased as R is increased. 

Numerical solutions were obtained for the four grid sizes h = t, &, & and &, for 
each of the Reynolds numbers R = 1, 10, 100, 500 and 1OOO. It is necessary in the 
present formulation to limit the boundaries both upstream and downstream to 
boundaries at finite distances from the origin on which it is reasonable to assume that 
the respective conditions (2.5f) and (2.5d) of Poiseuille flow are satisfied approxi- 
mately. Bramley & Dennis (1982a, b) have indicated that it is relatively easy to do this 
upstream, but more difficult downstream, as might be expected. However, the 
present problem is rather similar in the aspect of upstream and downstream boundary 
conditions to that considered by Dennis & Smith (1980). The discussions given there 
are quite appropriate in the present case and the imposition of the conditions (2.5d,f) 
at relatively small distances of two or three times the smaller channel width both 
upstream and downstream of the trailing edge generally were found to be satisfactory. 
Checks were made by moving the positions of these boundaries. The results presented 
here are believed to be accurate, based on the evidence of these tests. 

We first present results for the local dimensionless coefficient of skin friction cf  on 
the plate. This is determined from the shear stress r(x) = ,u(au*/ay*) [y* = 01 for x < 0 
by the definition 

(2.13) 

We can calculate this coefficient everywhere when x < 0, except at the trailing edge 
x = 0, where it is singular. However, the expression (2.11) indicates that as x+O- 

~t - u(R) ( - x)+, (2.14) 

so that if we determine a(R) the variation of the skin friction near enough to x = 0 
is known. 

Table 1 gives estimates of a(R) from the four grid sizes for each value of R. These 
values have been obtained by calculating a(R) to satisfy (2.14) using the value of cf 
at the nearest grid point to x = 0 (i.e. x = - h ) .  Naturally, as h+O we might expect 
to get better estimates of a(R) by this process for two reasons. First, the point at 
which the determination is made will be nearer to x = 0, and thus (2.14) should be 
a more adequate approximation; secondly, the value of cf should itself be more 
accurate, having been calculated from a solution on a finer grid. If we assume that 
an approximation a,(R) to a(R) is obtained with a given grid h and that, by use of 
central differences, we can assume the expansion 

a,(R) = a(R) + b(R) h* + c(R) h4 + . . . (2.15) 

in even powers of h, we may attempt to estimate a(R) by the process of h2 
extrapolation. This procedure was found to yield very satisfactory estimates of the 
length of upstream vortices in the case of flow in a channel with a step considered 
by Dennis & Smith (1980) ; similar results might be expected for a(R) in the present 
case. The h a 1  values of a(R) for each R obtained by repeated h2 extrapolation from 
the values calculated using the four separate grids are given in the last row of table 1. 
Although it is probable that the theoretical variation of a(R) with R is of the form 
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h\R 1 10 100 500 lo00 

d 5.093 1.398 0.3795 0.1680 0.1 195 
t 4.965 1.302 0.3126 0.1273 0.0904 
t 4.891 1.249 0.2737 0.1023 0.0699 
ih 4.850 1.223 0.2528 0.0875 0.0577 
E 4.834 1.212 0.2446 0.0816 0.0529 

TABLE 1 .  Values of Rba,,(R) estimated from various grid sizes at values of R in the range R = 1 
to R = 1000. The value E is the final estimate of d a ( R )  obtained by repeated h2 extrapolation from 
the four values on various grids. See (2.14), and also figure 6 ( b ) .  

-0.5 - 0.4 -0.3 - 0.2 -0.1 0 

FIQURE 1.  Variation of vorticity 5 on the splitter plate in x < 0, for various 
values of R, obtained computationally as described in $2. 

x = X + / L  

a(R) - bR-p (p > 0) when R is large, it is not possible to deduce any information 
regarding such a variation from the final values in table 1 (see also §§3,4). 

In figure 1 the distribution of vorticity over the plate is given for the Reynolds 
numbers considered. In order to be consistent with the results for cf in the final row 
of table 1, the curves in figure 1 have been obtained using a similar procedure of 
repeated h2 extrapolations. We may note, however, that the final results presented 
are scarcely distinguishable graphically from the results of the calculations using the 
finest grid, h = A. In figure 2 the velocity on the centreline of the downstream 
channel is shown. The main effect here is that, as the Reynolds number increases, the 
distance downstream of the trailing edge at  which the Poiseuille velocity distribution 
is recovered increases. In fact, only for the lowest of the Reynolds numbers R = 1 
and 10 is the Poiseuille flow attained, approximately, within the range x < 2 shown 
in figure 2. For higher values of R the recovery length is much longer, and it is not 
possible to say what it is with any reasonable certainty. 

The point here is that, as explained by Dennis & Smith (1980), when the Poiseuille 
flow downstream is applied as a boundary condition it does not give a very good local 
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1.6 - 

,-. 

= Oforx > 0. 

approximation to the flow. Moreover, Bramley & Dennis ( 1 9 8 2 ~ )  found that it was 
not possible to construct a satisfactory method of approximation to the flow 
downstream using its eigenfunction expansion corresponding to the linearized 
equation giving the first-order perturbation from the Poiseuille flow, although i t  was 
possible to derive a satisfactory method of approximation to the upstream flow. 
However, when Poiseuille flow is assumed downstream at a given station, it is found 
by trial that the effect of making this rather crude approximation at a finite but 
reasonably large distance from the trailing edge does not seriously affect the flow at 
large enough distances upstream from the station of the applied boundary condition. 
In other words, the effect of the imposition of Poiseuille flow downstream as a 
boundary condition does not spread back very far into the upstream flow. Thus it 
is possible to test a solution by applying the Poiseuille-flow condition a t  several 
stations downstream, and finding by trial an upstream region in which the flow does 
not change appreciably when the station of application of the downstream boundary 
condition is altered. Such a procedure has been used in the present computations. 
The computed solutions are accurate up to a reasonable distance from the trailing 
edge, but of course it cannot be said what further distance would be necessary for 
the flow to approach the actual Poiseuille velocity profile. In  the eigenfunction 
expansion given by Bramley & Dennis ( 1 9 8 2 ~ )  the eigenvalues are not well separated 
for high Reynolds number, and many terms would be needed to describe the 
downstream flow. Nevertheless, over the range shown in figure 2 the results are 
accurate, graphically at least, even for the higher values of R. 

A similar situation exists in figures 3(a-e), which show the variation of the 
dimensionless vorticity on the upper wall for the five cases R = 1 ,  10, 100, 500 and 
1000. As H increases, the decay of vorticity to its downstream value takes place over 
an increasingly longer scale of x. However, despite the necessity of imposing the 
vorticity distribution of Poiseuille flow a t  a finite distance downstream, the effect on 
the vorticity distribution does not spread greatly upstream, and generally the results 
shown in the figures are accurate over the range shown. Perhaps at the highest 
Reynolds number there still remains some grid dependence, even at the smallest value 
h = A, but even here we believe the results to be substantially correct, especially 
the extrapolated values in table 1 .  

It might have been desirable to adopt a coordinate transformation to deal with 
the downstream flow, because of the increasing lengthscale in x downstream as R 
increases. Such a device was used by Bramley & Dennis (1982b, 1984) in calculating 
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FIGURE 3 (u-d). For caption see opposite page. 
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FIQTJRE 3. The vorticity distributions C(z, 1) on the upper wall, 
versus z: for (a) R = 1 ; (a) 10; (c) 100; (d) 500; (e) 1OOO. 

flow in a branched channel, where a logarithmic transformation was employed in a 
region downstream of the point of branching. The present calculations, however, were 
carried out prior to the work of Bramley & Dennis and before the idea of employing 
such a transformation was conceived. The number of iterative loops through the sets 
of equations (2.6)-(2.8) to achieve a solution was many thousands in some cases, 
particularly for the higher values of R .  The main reason for this is the particularly 
sensitive nature of the calculation of boundary values of vorticity using (2.8). It has 
been explained that a relaxation factor must be employed in using (2.8) and that this 
may be decreased as R is increased. This leads to a great increase in the number of 
iterations, and any attempt to accelerate the procedure makes the calculation (2.8) 
unstable. The main calculations were carried out partly on the CYBER 73 and partly 
on the PRIME 4-00 compilers at the University of Western Ontario. Because of this 
division it is not feasible to give a reasonable estimate of the computer time used in 
each calculation, although recent recalculations with h = &=j took between 1 min (for 
R = 1) and 32 min (for R = 1O00) on an Amdahl580. 

3. Asymptotic theory for large R 
The theory for R B 1 is based on the free-interaction structure of Smith (1977 b), 

for we propose that the long axial lengthscale x = O(l&), surrounding the trailing edge 
at x = 0, governs the major effects of the trailing edge. On that scale x = RfX say, 
with X = 0(1), and the solution of (2.1)-(2.5) subdivides into three distinct regions 
1-111 (see figure 4a). 

In region I, which is the slightly perturbed core of the channel flow, 0 < y < 1 and 

(u, v , p )  = (Uo(y) ,  O , O ) +  (R-fu,, R%,, R-$pl)+ ... , 
where Uo(y)  = 6 ( y -  y2) .  From substitution into (2.1 a, b) we find the perturbation 
solutions 

where P, the pressure along y = 0, and A, the negative displacement of the core, are 
unknown functions of X. The pressure variation across the core in (3.2) is the vital 
factor on this lengthscale, and occurs because of the slight curving of the core flow 
during the negotiation of the trailing edge. 
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2.5 5.0 

1247, 12Q 

FIGURE 4. a) Schematic diagram, not to scale, of the asymptotic flow structure (1-111) for R 9 1 

downstream and the Naviedtokes  zone (0) very close to the trailing edge, considered in $3. (b) 
The solution curves for the effective shear stressesf" andf" versus 7 and in the near-wake form 
governed by (3.22)-(3.27) when R B 1. 

on the O( Rl ) streamwise lengthscale, the continuation into the Goldstein near-wake form ((i)-(iii)) 

I n  region I1 the nonlinear viscous wall layer near y = 0, y = R-fY with Y = 0(1), 
and from (3.1) and (3.2) 

(u, w,p)  = (R-:U, R-: V ,  R-tP(X))  + .. . . (3.3) 
The fact that aP/a Y = 0 in (3.3) follows from the transverse momentum equation, 
while the continuity and axial momentum equations give the classical boundary-layer 

au av au au a2u ~ + ~ = o ,  u-++-=-P(X)+- ax ay ay2' 

equations 

The boundary conditions on (3.4) are 

(Y  = 01, 

u =  v = o  ( X < O ) ,  

ay 
- _  a u - + = o  ( X > O )  

(u, V , P 9 A ) + ( 6 Y , 0 , 0 , 0 )  ( X + - a ) ,  

U - 6(Y+A(X)) ( Y - t a ) .  

(3.4) 

(3.5) 
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Here (3.5) reflects the presence of the trailing edge at  X = 0, while (3.6) and (3.7) 
respectively match the flow with the oncoming Poiseuille form (2.5f) far upstream 
and with the core motion. 

Similarly, in region 111, the nonlinear viscous layer near the wall at y = 1, we have 
y = 1-R-f F, with F = O ( l ) ,  and 

( u , v , p )  = (R-)8,  -R-tP,B-$P(X))+... . (3.8) 

Hence, from (2.1)-(2.5), the controlling equations and boundary conditions are 

a 8  aP a 8  a 8  a 2 8  

ax ZP ax -+ = 0, 8-+ v3 = -P‘(X)+*, (3.9) 

O =  P = o  (F=o, allX), (3.10) 

(8, P, P )  + (6K 0,O) (X+- a 1, (3.11) 

8 - 6 ( 8 - A ( X ) )  ( Y + a ) .  (3.12) 

The conditions (3.11) and (3.12) are analogous to (3.6) and (3.7), while (3.10) is the 
no-slip condition of (2.5a, b). 

Two more conditions are necessary, to define fully the trailing-edge problem on this 
lengthscale, and these are 

P(X) - P ( X )  = $A”(X), (3.13) 

a s X + a ,  
d P  d P  
- -+o 
dX’ dX 

(3.14) 

upon which comments will be made in the next paragraph. The task set, then, is the 
numerical one of solving the two linked nonlinear wall-layer problems (3.4)-(3.7) and 
(3.9)-(3.12) together with the pressuredisplacement relation (3.13) and the down- 
stream condition (3.14). The flow response far upstream of the trailing edge, on this 
O(&) lengthscale, starts in the exponential eigensolution form 

P(x) x P-, eKX (X+- a), (3.15) 

where 12k = 5.731 (Smith 1977), but the constant P-, remains unknown in advance. 
Indeed, the numerical task in essence is to find the value of P-, in (3.15) such that 
(3.14) is satisfied downstream (cf., in related interaction problems, Stewartson 1970; 
Smith t Stewartson 1973; Daniels 1974; Smith 1978). 

Before the solution of (3.4)-(3.7) and (3.9)-(3.14) is described, some explanation 
of the constraints (3.13) and (3.14) is called for. Clearly (3.13) follows from the 
matching of the pressures between the core and wall layer I11 by use of (3.2). 
However, condition (3.14) must be imposed to ensure a match as X-tco with the 
following wake flow that ensues on the longer axial lengthscale O(R) beyond the 
trailing edge. On the latter scale, where x = RX, with I> 0 and 0(1), u and p are 
0(1) and w is O(R-’), so that the governing equations throughout the half-channel 
0 < y < 1 are then the boundary-layer equations (Wilson 1971; Van Dyke 1970; 
Smith 1976) 

au a 7  au -au  - a Z u  

ax ay aY2 
=-+& = 0, u --+ v - = -p’(X)+- (3.16) 

from (2.la,b) to leading order. Here w = R-lv ,  and the balance of transverse 
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momentum requires that ap/ay = o( 1 )  when x > 0 is O( 1) .  The boundary conditions 
on (3.16) are 

(3.17) 

(3.18) 

from (2.5a-c). The starting condition on (3.16) is similar to that imposed in more 
standard near-wake analyses (Goldstein 1930), namely 

u+ U0(y)  (X+O+, 0 < y < 1) .  (3.19) 

For on this O(R)  axial lengthscale the nonlinear disturbances produced on the smaller 
O(&) lengthscale above are negligible, allowing a direct match with the Poiseuille 
flow of ( 2 . 2 ~ )  except along y = 0, 1,  where the trailing-edge conditions and the effects 
of layers I1 and I11 above must be recognized. The solution, necessarily numerical, 
of (3.16)-(3.19) would describe most of the development from the oncoming Poiseuille 
flow (2.5f) to the eventual Poiseuille flow (2.5d) attained as X +  co, but what is more 
important to us at present is the near-wake form of the solution of (3.16)-(3.18) as 
x+O+. A consistent (and, we believe, the only consistent) such form is based on 
the expansion 

p x PlZ+0(X) ( - L O + )  (3.20) 

of p ( x ) ,  where P, is a constant to be determined. With (3.20) the solution of 
(3.16)-(3.19) splits into three zones (i)-(iii) as x+O+ (figure 4a). In (i), where 
O < y < l ,  

u = U o ( y ) + A , ~ U ; ( y ) + O ( s ) ,  (3.21) 

(X > 0) 
_ -  a% v=o (y=O) 1 u = v = o  ( y = 1 ) ,  

aY 

where the constant A, is unknown. In  (ii), where y = O ( S )  and q = yX-4, 

u = E f ( q )  + O ( Z ) ,  

and f(q) satisfies the nonlinear ordinary differential equation and boundary 
conditions 

f”’+$ff’’-$f’z = $Pl (from (3.16)), (3.22) 

f(0) = f ” ( O )  = 0 (from (3.18)), (3.23) 

f ’  - 6(7+Al)  (r+.co). (3.24) 

Here (3.24) follows from matching (ii) with (i). Similarly, in (iii), where y- 1 = O(%) 
and f =  (l-y)X-i, u = - % f ’ ( f l + O ( s )  and so 

f’”+$Jf”-ff’2 = $Pl (from (3.16)), 

f(O) = p ’ ( O )  = 0 (from (3.17)), 

J’ - 6(7-A,) (f+ a). 

(3.25) 

(3.26) 

(3.27) 

The solution of the interlinked similarity problems (3.22)-(3.24) and (3.25)-(3.27) was 
obtained numerically by adapting the numerical procedure to be described below, 
is shown in figure 4(b) and has the properties 

$P1=0.085 x 1 6 ,  $Al = 0 . 3 4 0 ~  12-4, f”(O) = 3.281. (3.28) 

We note that a check on the numerical accuracy here was made by recalculating the 
solution of Goldstein’s (1930) near-wake problem, and the difference between our 
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solution and Goldstein's was found to be only 1 in the fourth significant figure. Also 
the matching of the near-wake form in (3.20)-(3.28) as x+O+ with the previous 
O ( H )  structure of (3.1), (3.3) and (3.8) as X+ 00 there verifies the imposition of the 
constraint (3.14), from (3.20) and (3.3). Indeed the results (3.28) with (3.20) and (3.21) 
lead us to expect the asymptotes 

P ( X )  - P ( X )  - 0.128(144X)i, A ( X )  - 0.680(&Xp (X+OO) (3.29) 

in view of (3.1)-(3.3), (3.8) and (3.13). 
The solution of (3.4)-(3.7) and (3.9)-(3.14) was sought by modifying the program 

of Smith (1977), in which paper most details of the central-difference numerical 
scheme used may be found. A shooting technique was employed to find the solution 
of (3.4)-(3.7) and (3.9)-(3.13) satisfying (3.14). Thus a number of guesses were made 
for the value b = P(X-,) of P at a suitably large negative value X- , of X; for each 
the free-interaction solution was then allowed to develop up to the trailing edge at 
X = 0, and the wake conditions in (3.5) were imposed at stations beyond X = 0. Such 
guesses always led to divergence from the required downstream condition (3.14) (cf. 
Stewartson 1970; Smith & Stewartson 1973; Daniels 1974; Smith 1978), but only two 
kinds of such divergence are possible (figure 5a) ,  and the required solution satisfying 
(3.14) lies between them. In practice the criterion on 7" E aD/a P(X, 0)' 

7"(X)+3.281 (X+OO)  (3.30) 

(from (3.28)), proved easier to seek in the refinement of the value of b than did (3.14). 
The refinement leads to the solution of (3.4)-(3.7) and (3.9)-(3.14) shown in figure 5 (b). 
We found the properties 

' ( O )  - 0.0164 (3.31) 3- ' ( O )  - -0.0186, -3- f(0) = 4.91, 7(0-) = 7.22, 

using a grid of height (in f = 12fY) P, = 10, with step lengths 

A P  = 0.025 in f ,  AX = 0.01 in g = (12)-tX 

and with 8-, = 12-!X-, = -0.86. Here 7 E aU/aY(X,O) = 0 for X > 0, while the 
factors involving powers of 12 here and elsewhere allow for the different non- 
dimensionalization of Smith (1977b). As checks on the accuracy we found the 
respective values 4.93, 7.20, -0.0181 and 0.0160 instead of those in (3.31) when the 
grid size was doubled to A P  = 0.05, AX = 0.02, and the respective values 4.99, 7.13, 
-0.0171 and 0.0151 when the grid size was quadrupled to A f  = 0.10, AX = 0.04, 
keeping p, fixed at 10. When the grid height was doubled to P, = 20 with A? = 0.10, 
AX = 0.04 the four respective values last referred to were reproduced identically, and 
the same proved true when X-, was set equal to - 0.70. Accordingly (AX)2 + (A P)z 
extrapolation works well, and we believe the numerical values for 7(0 - )  and F(0) in 
(3.31) to be accurate to within 0.2 yo or less. 

The asymptotic forms for P, P,  A and Fin (3.29) and (3.30), shown in figure 5(b ) ,  
provide a further overall check on our numerical solution. Also shown in figure 5 (b) 
is the local form of the pressure P just beyond the trailing edge on the present O(Rf )  
lengthscale. The latter form is 

(3.32) 

and follows from a local analysis for 0 < X -4 1 of the solution to (3.4)-(3.7) and 
(3.9)-(3.14) similar to that of (3.20)-(3.28) further downstream. In the local analysis 
both of the wall layers I1 and I11 develop double structures as X+O+ . Within the 

P( X) - P(0 - ) + 0.6 133(7(0 - ) )) x% (X + 0 + ) , 

c 
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FIGURE 5. (a) Samples of the trial numerical solutions (---, satisfying (3.4)-(3.7) and (3.9)-(3.13)) 
used in the interpolation for the full solution (-, satisfying (3.4)-(3.7), (3.9)-(3.13) and (3.30)) 
for the skin friction i versus X. (b) The solution of (3.4)-(3.7) and (3.9)-(3.14) for 7 ,  i, P, P and 
A versus X on the O ( d )  lengthscale in x when R % 1. Also shown for comparison purposes are the 
downstream (X+ CO) asymptotes 0 0 0, 0 0 0 and A A A for A in (3.29), P and P in (3.29), 
and ?in (3.30) respectively, and the asymptote- - -locally ( X + O + )  for Pfrom (3.32). The solution 
for the reduced centreline velocity U ( X ,  0) versus X in X > 0 is given in figure 6(c) as the limit 
curve for &uCL 12-f versus (12R)-fx. 
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double structure of layer 11, U = XiP’(q) when q = YX-4 is of O(1) and F ( q )  satisfies 
(3.22)-(3.24) again, with F replacing f and unknown constants p,, a, replacing P,, 
A ,  respectively there. However, the condition a, = 0 is necessary: otherwise the 
implied property A’(X)  - Xf as X+O + would lead to inconsistencies within the 
double structure of layer I11 because of the relation (3.13). Hence the solution for 
F(q)  and for p, is that of Hakkinen & Rott (1964, leading to the result (3.32) wherein 
p ,  is the coefficient of s. The double structure of layer 111 is a relatively passive affair, 
on the other hand, since we find that P,  P‘ and is 
finite but discontinuous as X+O+ , and A has only a mild o ( s )  irregularity, of the 
form 

are continuous at  X = 0, 

A( X) - A(0 - ) + XA‘(0 - ) + iX2A”(O - ) -&, 23 (3.33) 

as X-tO + . The agreement between the full solution and the asymptotes of (3.29), 
(3.30) and (3.32) (see figure 5b)  and (3.33) is an encouraging feature. 

Comparisons between the present, large-R, theory and, the calculations for finite 
values of R are given below. We note in advance the existence of a small passive 
Navier-Stokes zone of non-uniformity in the above theory on a lengthscale 
x, y = O(R*) near the trailing edge where the discontinuities in 7 and P‘ for instance 
are adjusted (cf. Dijkstra 1974). In fact the solution within this O(R-4) Navier-Stokes 
zone is exactly that of Dijkstra (1974) when suitable numerical factors are extracted 
to account for the values of the pressure P and the skin friction 7 in (3.31) and (3.32) 
as X + 0 f and fix + 00, and from his calculation we have the prediction 

(3.34) 

in particular. Again, this is compared below with the calculations for finite values 
of R. 

Some work in this section forms part of Bates’ (1978) thesis; he also considers 
wedge-like junctions, and curvings, of channel flows, by means of the same free- 
interaction theory, as well as certain other problems of bifurcations, blockages or 
thermal effects in channel or axisymmetric pipe flows. 

4. Comparisons and comments 
In  qualitative terms there is little or no doubt that the numerical solutions of the 

Navier-Stokes equations (figures 1-3) and the asymptotic predictions (figures 4 and 5) 
are in general agreement on the most important features of the flow a t  moderate- 
to-large Reynolds numbers R. The overriding effect of the channel junction here is 
to produce an increasing slip velocity ucL beyond the trailing edge. This acceleration 
draws fluid broadly towards the wake centreline, thus increasing the shear stress c; 
on the splitter plate, but decreasing the shear stress c: on the outer wall, before the 
approach to the ultimate plane Poiseuille flow takes place quite far downstream. The 
effect of the increasing slip velocity is eventually overwhelmed, incidentally, if the 
two straight channels upstream are made gradually to converge at a significant angle 
(see Bates 1978; and Smith & Duck 1980). Further qualitative agreement between 
the results derived from $52 and 3 is evident in figures 1 and 3, where the increase 
of upstream influence in the calculated solutions for [$ as R increases is in keeping 
with the O(&) upstream trend proposed in $ 3  for R 9 1. We turn to quantitative 
comparisons next. In  making these comparisons we believe i t  important to emphasize 
that the asymptotic theory identifies at least three distinct lengthscales in x, namely 
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FIGURE 6 (a-b). For caption see opposite page. 
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O(R),  O(Rf )  and O(R-k); the lengthscale x = 0(1) also plays a significant role, albeit 
at higher order; and there are four scales involved in y, namely O( l), O(R-f), 1 - O(Rd) 
and O(R-4). Consequently, except at ‘unambiguous’ positions such as (x, y) = (0, 0), 
(0 , l )  and ( f co, y), a little care has to be exercised in interpreting the asymptotic 
predictions appropriately. As it turns out, the numerical solutions themselves appear 
to single out the projected lengthscales satisfactorily for increasing R, as described 
below. 

Figures 6 (a-d) present quantitative comparisons between the numerical results 
described in $2, for finite values of R ,  and the asymptotic predictions described in 
$3. First, in figure 6 ( a )  we plot the vorticity [i on the splitter plate against 3 = &x 
just upstream of the trailing edge, to make comparisons with the local predictions 
noted in the penultimate paragraph of $3. The agreement is fairly good, both 
relatively far upstream (on the scale of figure 6 a ) ,  where the value 7.22 of [; from 
(3.31) is supposed theoretically to apply, and relatively close to the trailing edge, 
where the numerical results as R increases are not inconsistent with the trend (3.34). 
In-between also comparison is quite favourable overall, although the results for 
R = 500 are slightly closer to the asymptotic predictions than are the results for 
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FIQURE 6. Comparisons between the numerical solutions described in $2 and the asymptotic theory 
described in $3, for increasing R. (a) Shear stress c; = &,O)  versus f = Rix < 0 on the splitter 
plate: -, numerical results from $2; x , from $3 with Dijkstra (1974) (see penultimate paragraph 
of $3) ; -.-, upstream limit value from (3.31). (b) aR versus R, where a is the value of -25,Iz It R-' 
as z+O- referred to in $2: x ,  from the asymptotic prediction (3.34); 0, numerical results from 
$2 on four computational grids. Here each grid refinement reduees the value of aR a t  each fixed 
R. (c) The reduced wake centreline velocity MucL 123 versus X = (12R)-fx, where uCL u(x, 0) : 
-, numerical results from $2; -*-, asymptote U(X,O)  from the solution of (3.4H3.7) and 
(3.9)-(3.14). (d) The shear stress G(0) = c(0,l)  versus R: ---, the asymptote f ( 0 )  in (3.31); 0, 
numerical results from $2 on various computational grids; the grid refinement produces the upper 
value @ at R = 1OOO. 
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R = 1000. Moreover, the comparisons indicate clearly that in a numerical sense t,he 
local behaviour (2.14) or (3.34) holds only at positions extremely close to the trailing 
edge, a t  the larger values of R ;  nevertheless, the calculations of $2 still tend to  agree 
with (3.34) increasingly as the computational grid is refined even at such values 
of R. Another view of this aspect is given in figure 6 (b) ,  where both the influence of 
grid refinement a t  various Reynolds numbers R and a comparison with the 
asymptote from (3.34) are presented for the coefficient a(R) = limz+o- (2c; I x It/R). 
Increasing grid refinement tends to bring the calculations and the one-term 
asymptote much closer together. 

Figure 6 (c) compares the numerical and asymptotic solutions for the centreline 
velocity ucL for x > 0, but plotted in the form MucL 12-4 versus x( 12R)* suggested 
by $ 3  as the universal limit form as R+w. The closeness of the agreement here seems 
relatively encouraging for the O(Rf ) scale theory, whereas the previous comparisons 
of figures 6 (a,  b)  tend t o  emphasize the practical importance of the O(R-t) subscale 
just upstream instead. That subscale is responsible for a small shift of origin, which 
could be applied if necessary to  extend the one-term limiting prediction in figure 6 ( c )  
into a two-term expansion, but that  shift is not included here. Also it is worth noting 
the presence of the still longer-scale zone x = O(R) further downstream in which the 
limit curve of figure 6(c) again becomes invalid. Finally, figure 6 ( d )  presents a com- 
parison between the numerical and asymptotic results for the shear stress (z(0) 
on the outer wall at the station x = 0. A further comparison concerning the variation 
of {$ with x, as R increases, is not possible here since the asymptotic properties of 
the difference cz-{z(O) on the 0(1) scale in x around z = 0 are not yet known; but 
the agreement concerning the value of c$(O)  in figure 6 ( d )  is quite good over a wide 
range of values of R, apart from the remaining possibly grid-dependent undershoot 
at R = 1000. 

If we bear in mind the inevitable difficulties, however major or minor, regarding 
the interpretation of lengthscales on the analytical side and the distribution of the 
computational grid on the numerical side, we feel that  although the measure of 
agreement is not absolutely conclusive it does favour belief in the value of both the 
analytical and numerical work. On the numerical side the techniques described in $ 2  
for the treatment of the discontinuity at the trailing edge and of the flow conditions 
far upstream and downstream seem to prove satisfactorily accurate in most respects. 
The third main difficulty, that of obtaining convergence of the iterative scheme at 
the larger values of R, is handled adequately as before (Dennis & Hudson 1978) by 
the extended differencing outlined in $ 2 .  The asymptotic approach likewise draws 
some encouragement from the comparisons above. Apart from the support for the 
correctness of the limiting account in $ 3 as R+ 00, it  is an interesting sign also that 
the results of the asymptotic theory prove useful a t  moderate? values of R, even 
though terms as slowly varying as Rf are involved. 

Applications of both the computational and the asymptotic techniques to other, 
perhaps more complicated, internal flows concerning branchings or similar basic 
disturbances would seem well worth while. The effects of non-symmetry, cornering, 
curving and constriction as well as branching are of considerable practical and 
theoretical interest, whether in planar channel flows or three-dimensional pipe flows. 
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